What is the sum of the following sequence?

\displaystyle {\frac{1}{11!+12!} + \frac{1}{12!+13!} +\frac{1}{13!+14!} +\cdots + \frac{1}{31!+32!}}

a) \displaystyle {\frac{1}{11!} - \frac{1}{32!} }

b) \displaystyle {\frac{1}{12!} - \frac{1}{32!} }

c) \displaystyle {\frac{1}{10!} - \frac{1}{32!} }

d) \displaystyle {\frac{1}{12!} - \frac{1}{33!} }


Ans: d) \displaystyle {\frac{1}{12!} - \frac{1}{33!} }

Explanation:

Concept of n! is required to solve this type of problem.

n! =n\times (n-1)!=n\times (n-1)\times (n-2)! etc.

\begin{align*} \frac{1}{11!+12!}&=\frac{1}{11!+12\times 11!}\\ &=\frac{1}{(1+12)\times 11!}\\ &=\frac{1}{13\times 11!}\\ &=\frac{12}{13\times 12\times 11!}\\ &=\frac{12}{13!}\\ &=\frac{13-1}{13!}\\ &=\frac{13}{13!}-\frac{1}{13!}\\ &=\frac{13}{13\times 12!}-\frac{1}{13!}\\ &=\frac{1}{12!}-\frac{1}{13!}\\ \end{align*}
\begin{align*} \frac{1}{12!+13!}&=\frac{1}{12!+13\times 12!}\\ &=\frac{1}{(1+13)\times 12!}\\ &=\frac{1}{14\times 12!}\\ &=\frac{13}{14\times 13\times 12!}\\ &=\frac{13}{14!}\\ &=\frac{14-1}{14!}\\ &=\frac{1}{13!}-\frac{1}{14!}\\ \end{align*}

Similarly, \begin{align*} \frac{1}{13!+14!} &=\frac{1}{14!}-\frac{1}{15!}\\ \end{align*}

And, \begin{align*} \frac{1}{31!+32!} &=\frac{1}{32!}-\frac{1}{33!}\\ \end{align*}

Now writing the full expression:

\begin{align*} &\frac{1}{11!+12!} + \frac{1}{12!+13!} +\frac{1}{13!+14!} +\cdots + \frac{1}{31!+32!}\\ &=\frac{1}{12!}-\frac{1}{13!} + \frac{1}{13!}-\frac{1}{14!} + \frac{1}{14!}-\frac{1}{15!} + \cdots + \frac{1}{32!}-\frac{1}{33!}\\ &=\frac{1}{12!}-\frac{1}{33!} \end{align*}

Except first and last terms, all will be cancelled out.

Please share this post with someone who might find it helpful.

1 thought on “1/(11!+12!)+1/(12!+13!)+1/(13!+14!)+⋯+1/(31!+32!)”

Leave a Comment

Your email address will not be published. Required fields are marked *

error: Content is protected !!
Scroll to Top