Concepts of various remainder theorems is one of the important part of CAT, MAT, GMAT, SSC etc. This is a very vital part for college campus placement apti round.
Remainder Theorem
Question: Let N = 1421 × 1423 × 1425
What is the remainder when N is divided by 12? [CAT-2000]
(a) 0
(b) 9
(c) 3
(d) 6
Ans: (c) 3
Explanation:
1421 mod 12 = 5
\begin{align*}
\frac{\text{N}}{12} &= \frac{1421\times 1423\times 1425}{12}\\
&=\frac{5\times 7\times 9}{12}\\
&=\frac{-1\times 9}{12}\\
&=\frac{-9}{12}\\
&=\frac{3}{12}\\
\end{align*}
Question: \displaystyle \frac{2851\times (2862)^2\times (2873)^3}{23}, Remainder?
(a) 8
(b) 10
(c) 17
(d) 18
Ans: (d) 18
Explanation:
2851 mod 23 = -1
Polynomial Remainder Theorem
Question: \displaystyle \frac{79^6}{11}, Remainder?
(a) 0
(b) 1
(c) 8
(d) 9
Ans: (d) 9
Explanation:
Question: \displaystyle \frac{53^{12}}{17}, Remainder?
(a) 0
(b) 1
(c) 15
(d) 16
Ans: (d) 16
Explanation:
Question. \displaystyle\frac{2^{196}}{96}, Remainder?
(a) 32
(b) 64
(c) 16
(d) 2
Ans: (b) 64
Explanation:
96=32\times 3=2^5 \times 3
\begin{align*}
\frac{2^{196}}{96} &= \frac{2^5 \times 2^{191}}{2^5 \times 3}\\
&=\frac{(3-1)^{191}}{3}\\
&=\frac{-1}{3}\\
&=\frac{2}{3}\\
&=\frac{64}{96}\\
\end{align*}
So, remainder =1
Question: The remainder when 7^{84} is divided by 342 [CAT-1999]
(a) 0
(b) 1
(c) 49
(d) 341
Ans: (b) 1
Explanations:
7^3=343=342+1
\begin{align*}
\frac{7^{84}}{342} &= \frac{(7^3)^{28}}{342} \\
&= \frac{(342+1)^{28}}{342}\\
&=\frac{1^{28}}{342}\\
&=\frac{1}{342}
\end{align*}
Hence, remainder = 1.
Question: \displaystyle\frac{7^{84}}{2400}, Remainder?
(a) 1
(b) 2399
(c) 4
(d) 7
Ans: (a) 1
Explanations:
Let’ find out which power of 7 is nearer to 2400
Hence, Remainder = 1.
Fermat’s Theorem
Question: Which one of the following is the remainder when 10^{20} is divided by 7? [UPSC CAPF – 2018]
(a) 1
(b) 2
(c) 4
(d) 6
Ans: (b) 2
Explanations:
\displaystyle\frac{10^{20}}{7} = \displaystyle\frac{(7+3)^{20}}{7}=\displaystyle\frac{3^{20}}{7}Now, (3, 7) ⟶ Co-prime
So we could apply Fermat’s Theorem
Euler no of 7, ε(7) = 7 – 1 = 6
\displaystyle\frac{3^{20}}{7} = \displaystyle\frac{3^{6\times3 +2}}{7} = \displaystyle\frac{3^{2}}{7}= \displaystyle\frac{9}{7}= \displaystyle\frac{2}{7}Hence, remainder = 2
Advanced Problems
Question: Find the remainder when 10^{{20}^{30}} is divided by 23?
(a) 5
(b) 8
(c) 12
(d) 13
Ans: (d) 13
Explanation:
\displaystyle \frac{10^{{20}^{30}}}{23}, Remainder?
This is going to be a lengthy solution as we would do every step.
\displaystyle \frac{10^{{20}^{30}}}{23}, here (10, 23) are co-prime, so we could apply Fermat’s Theorem
Euler number of 23 is 22.
So let’s get remainder first for this expression, \displaystyle\frac{20^{30}}{22}
Now our actual problem reduces to \displaystyle\frac{10^{12}}{23}, Remainder?
As the denominator involves 23, let’s find out some initial multiples of it, so that it’s easy to know which power we should work with
23 ⟶ 23, 46, 69, 92, 115, 138, etc.
Join Us
Join the discussion and ask any question of maths and reasoning directly to us and other like-minded user just like you!